## Worksheet for 2021-12-03

## Warm-up

Question 1. T/F: The gradient $\nabla f(a, b)$ gives a normal vector to the surface $z=f(x, y)$ at the point where $x=a$ and $y=b$.
Question 2. T/F: If $|\mathbf{r}(t)|=1$ for all $t$, then $\mathbf{r}$ is always perpendicular to $\mathbf{r}^{\prime}$.

## From last time

Problem 1. Let $\mathbf{F}=\langle a, b, c\rangle$ where $a, b, c$ are constants. Let $D$ be the region $x^{2}+y^{2}+z^{2} \leq 1$ and let $E$ be the solid cube $-2 \leq x, y, z \leq 2$.
(a) Compute $\iiint_{\partial D} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S$ and $\iint_{\partial E} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S$.
(b) Compute $\iint_{\partial D}|\mathbf{F} \cdot \mathbf{n}| \mathrm{d} S$ and $\iint_{\partial E}|\mathbf{F} \cdot \mathbf{n}| \mathrm{d} S$.

As usual, we orient $\partial D$ and $\partial E$ outwards.
Problem 2. Let $\mathbf{r}(t)$ parametrize the space curve $C$, with $\left|\mathbf{r}^{\prime}(t)\right|=1$ for all $t$.
(a) If $f(x, y, z)$ is a function on $\mathbb{R}^{3}$, show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(f(\mathbf{r}(t)))=D_{\mathbf{r}^{\prime}(t)} f .
$$

(b) Suppose that $\mathbf{r}(t)$ parametrizes the curve of intersection of $2 z=x+y+3$ and $z^{2}=x^{2}+y^{2}$ with $\mathbf{r}(0)=(3,4,5)$ and $\left|\mathbf{r}^{\prime}(0)\right|=1$, counterclockwise when viewed from above. Find $\mathrm{d} z / \mathrm{d} t$ at $t=0$.

## Miscellaneous problems

Problem 1. Find the angle between the two planes $x+y+2 z=$ 3 and $x+y-z=1$.
Problem 2. Write a Cartesian equation for the tangent line to the parametric curve $x=t^{3}-12 t, y=t^{2}$ at the point $(-16,4)$.
Problem 3. Find a linear approximation to the function $f(x, y)=e^{x+y} \sin (x+y)$ at the point $(x, y)=(0,0)$.
Problem 4. Consider the vector field

$$
\mathbf{F}=\left\langle\frac{1}{x^{2}}+y, x+\frac{1}{y}+z^{2}, 2 z y\right\rangle .
$$

If it is conservative, find a potential function $f$ such that $\nabla f=$ F. If it is not conservative, explain why no such $f$ can exist.

Problem 5. Find the maximum value of the function $f(x, y)=x^{3}+y^{3}$ in the region $x^{4}+y^{4} \leq 1$.
Problem 6. Find the length of the polar curve $r=\theta^{2}-1$, $1 \leq \theta \leq 2$.
Problem 7. At the point $(x, y)=(2 \pi, 0)$ on the polar curve $r=\theta \cos \theta$, find the slope $\mathrm{d} y / \mathrm{d} x$.

Problem 8. Evaluate $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where $\mathbf{F}=\langle\sin x, \cos y, x z\rangle$ and $C$ is parametrized as $\mathbf{r}(t)=\left\langle t^{3},-t^{2}, t\right\rangle, 0 \leq t \leq 1$.

Problem 9. Suppose that $f, g$ are defined on $\mathbb{R}^{3}$ and $C$ is any closed curve. Show that

$$
\int_{C}(f \nabla g+g \nabla f) \cdot \mathrm{d} \mathbf{r}=0
$$

What if $f, g$ are not defined on all of $\mathbb{R}^{3}$ ?
Problem 10. Show that $f(x, y)=\cos (x+y)$ has a critical point at ( 0,0 ), and classify it as either a local min, local max, or saddle point.
Problem 11. Find the area of the part of the plane $x+2 y+3 z=1$ that lies inside the cylinder $x^{2}+y^{2}=3$.
Problem 12. Let $\mathbf{a}, \mathbf{b}$ be vectors in $\mathbb{R}^{3}$, and suppose that $\mathbf{a}+\mathbf{b}$ is orthogonal to $\mathbf{a}-\mathbf{b}$. Show that $|\mathbf{a}|=|\mathbf{b}|$.
Problem 13. Compute the double integral

$$
\int_{0}^{1} \int_{0}^{\cos ^{-1}(y)} \sin (\sin (x)) \mathrm{d} x \mathrm{~d} y
$$

Problem 14. Let $f(x, y, z)=\sin (x+y \tan (x))+\cos (x+$ $z \tan (z))+\ln (y+z \tan (y))$. Compute $f_{x y z}$.

Problem 15. The volume enclosed by a sphere of radius $R$ is $\frac{4}{3} \pi R^{3}$. Use this fact, and an appropriate change of variables, to deduce a formula for the volume enclosed by the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$, where $a, b, c>0$.
Problem 16. Set up, but do not evaluate, a triple integral giving the volume of the bounded region between the planes $x+y+z=1, x-y+z=1, x=0$, and $z=0$.
Problem 17. Let $f$ be a function of $x, y$, and let $r, \theta$ denote polar coordinates for the $x y$-plane. Assume that $r \geq 0$. Suppose that at the point $(6,8)$, we have $\partial f / \partial r=4$ and $\partial f / \partial \theta=-2$. Find $f_{x}(6,8)$ and $f_{y}(6,8)$.
Problem 18. A lamina occupies the region of the $x y$-plane inside $x^{2}-2 x+y^{2}=0$ but outside $x^{2}+y^{2}=1$, and has density $\sigma(x, y)=|y|$. Find its center of mass.
Problem 19. Observe that $1^{7}-(1)(1)^{6}+(2)(1)-2=0$. Now use implicit differentiation to approximate a solution to

$$
x^{7}-1.03 x^{6}+2.06 x-2=0
$$

(Hint: consider the equation $x^{7}-a x^{6}+b x-2=0$ as implicitly defining $x$ in terms of $a, b$ near $(a, b, x)=(1,2,1)$.)

Problem 20. Let $D$ be the region lying between the lines $y=2 x+1, y=2 x+4, y=-3 x+1, y=-3 x+4$. Find

$$
\iint_{D} \frac{y-2 x}{y+3 x} \mathrm{~d} x \mathrm{~d} y
$$

Problem 21. Let $C$ be a circle of radius 1 in the plane $x+2 y+z=$ 4 centered at the point $(1,2,-1)$ and oriented clockwise when viewed from the origin. Find

$$
\int_{C} y \mathrm{~d} x+2 x \mathrm{~d} y+(2 x-y) \mathrm{d} z
$$

Problem 22. Suppose that $x^{1 / 3} y^{2 / 3}=1, x \geq 0, y \geq 0$.
(a) Find the values of $x$ and $y$ for which

$$
u x+v y
$$

is minimal, in terms of fixed $(u, v) \in \mathbb{R}^{2}$.
(b) Compute the Jacobian determinant

$$
\frac{\partial(x, y)}{\partial(u, v)} .
$$

Could you have figured this out without solving the preceding part?
Problem 23. Let $h(t)=\frac{t}{\sqrt{1+t^{2}}}$, and suppose that $u(x, y)$ satisfies the functional equation

$$
u-h(x-y u)=0 .
$$

(Note that $h(x-y u)$ means the function $h$ applied to the input $x-y u$, not multiplication.) Show that $u$ then satisfies the
partial differential equation

$$
\frac{\partial u}{\partial y}+u \frac{\partial u}{\partial x}=0 .
$$

Problem 24. Let $S$ be a sphere of radius $R$ centered at the origin, and suppose $a, h$ are such that

$$
-R \leq a \leq a+h \leq R .
$$

Evaluate the surface area of the portion of $S$ that lies between the planes $z=a$ and $z=a+h$, and show that it does not depend on $a$; only on $h$.
Problem 25. Let $S$ be given in spherical coordinates by an equation $\rho=f(\theta)$, where $(\theta, \phi) \in D$. Show that the area of $S$ is

$$
\iint_{D} \sqrt{\sin ^{2} \phi f(\theta)^{4}+f(\theta)^{2} f^{\prime}(\theta)^{2}} \mathrm{~d} \theta \mathrm{~d} \phi
$$

(This is mostly just tedious.)
Problem 26. Find the flux of the vector field

$$
\left\langle 3+e^{y z}, 2 y+\sin (x z), \arctan (x)-z\right\rangle
$$

through the upper hemisphere $(z \geq 0)$ of the unit sphere $x^{2}+y^{2}+z^{2}=1$, oriented upwards.
Problem 27. Find the volume of the region described by the two simultaneous inequalities

$$
\begin{aligned}
& (x-2)^{2}+y^{2}+z^{2} \leq 4 \\
& x^{2}+y^{2}+(z-2)^{2} \leq 4
\end{aligned}
$$

You may find it helpful to exploit symmetry.

